Finally got a drone!
As a reader of my blog, you already know that I have been making videos lately and thoroughly enjoying the process. When I was in Germany early this summer (and went 280 km/h in a porsche!) to produce SEGGER's 25th anniversary video, the company bought a drone so we could get an aerial shot of the party (at about the 1:35 mark in this video). Since then, I have been obsessing on buying a drone for myself and finally made the move a few weeks ago - I acquired a used DJI...
Feedback Controllers - Making Hardware with Firmware. Part 2. Ideal Model Examples
Developing and Validating Simulation ModelsThis article will describe models for simulating the systems and controllers for the hardware emulation application described in Part 1 of the series.
- Part 1: Introduction
- Part 2: Ideal Model Examples
- Part 3: Sampled Data Aspects
- Part 4: Engineering of Evaluation Hardware
- Part 5:
Feedback Controllers - Making Hardware with Firmware. Part I. Introduction
Introduction to the topicThis is the 1st in a series of articles looking at how we can use DSP and Feedback Control Sciences along with some mixed-signal electronics and number-crunching capability (e.g. FPGA), to create arbitrary (within reason) Electrical/Electronic Circuits with real-world connectivity. Of equal importance will be the evaluation of the functionality and performance of a practical design made from modestly-priced state of the art devices.
- Part 1:
SEGGER's 25th Anniversary Video
Chances are you will find this video more interesting to watch if you take five minutes to first read the story of the week I spent at SEGGER's headquarters at the end of June.
The video is only a little more than 2 minutes long. If you decide to watch it, make sure to go full screen and I would really love to read your thoughts about it in the comments down bellow. Do you think a video like this succeeds in making the viewer want to learn more about the company?...
Linear Feedback Shift Registers for the Uninitiated, Part II: libgf2 and Primitive Polynomials
Last time, we looked at the basics of LFSRs and finite fields formed by the quotient ring \( GF(2)[x]/p(x) \).
LFSRs can be described by a list of binary coefficients, sometimes referred as the polynomial, since they correspond directly to the characteristic polynomial of the quotient ring.
Today we’re going to look at how to perform certain practical calculations in these finite fields. I maintain a Python library on bitbucket called...
Went 280km/h (174mph) in a Porsche Panamera in Germany!
Those of you who've been following my blog lately already know that I am going through some sort of mid-life crisis that involves going out there to meet people and make videos. It all started with Embedded World early this year, then continued at ESC Boston a couple of months ago and the latest chapter just concluded as I returned from Germany after spending a week at SEGGER's headquarters to produce a video to highlight their 25th anniversary.
Linear Feedback Shift Registers for the Uninitiated, Part I: Ex-Pralite Monks and Finite Fields
Later there will be, I hope, some people who will find it to their advantage to decipher all this mess.
— Évariste Galois, May 29, 1832
I was going to call this short series of articles “LFSRs for Dummies”, but thought better of it. What is a linear feedback shift register? If you want the short answer, the Wikipedia article is a decent introduction. But these articles are aimed at those of you who want a little bit deeper mathematical understanding,...
Going back to Germany!
A couple of blog posts ago, I wrote that the decision to go to ESC Boston ended up being a great one for many different reasons. I came back from the conference energized and really happy that I went.
These feelings were amplified a few days after my return when I received an email from Rolf Segger, the founder of SEGGER Microcontroller (check out their very new website), asking if I would be interested in visiting their headquarters...
ESC Boston's Videos are Now Up
In my last blog, I told you about my experience at ESC Boston and the few videos that I was planning to produce and publish. Here they are, please have a look and any feedback (positive or negative) is appreciated.
Short HighlightThis is a very short (one minute) montage of some of the footage that I shot at the show & conference. In future shows, I absolutely need to insert clips here and there of engineers saying a few words about the conference (why they...
Back from ESC Boston
NOT going to ESC Boston would have allowed me to stay home, in my comfort zone.
NOT going to ESC Boston would have saved me from driving in the absolutely horrible & stressful Boston traffic1.
NOT going to ESC Boston would have saved me from having to go through a full search & questioning session at the Canada Customs on my return2.
2017/06/06 update: Videos are now up!So two days...
FPGA or DSP Processor - Parameters to Make the Right Choice
Introduction
Digital Signal Processing (DSP) has a huge global market that is growing fast day by day with rapidly evolving sophisticated modern electronics applications like 3G wireless, voice over internet protocol (VoIP), multimedia systems, radar and satellite systems, medical systems, image-processing applications and consumer electronics. These sophisticated DSP applications pose many conflicting challenges to system designers and application developers in terms of cost and...
Makefiles for Xilinx Tools
Building a bitstream from an HDL is a complicated process that requires the cooperation of a lot of tools. You can hide behind an IDE or grow a pair and use command line tools and a makefile to tie your build process together. I am not a huge fan of makefiles either (I believe a language should be expressive enough to automate the build process), but the alternatives are dismal.
Command-line driven workflow is easier on the hands and faster. The example...
Developing FPGA-DSP IP with Python
This blog post was previously titled MyHDL ASIC Proven (How is this related to FPGAs?) but the blog post has been updated and mainly discusses developing FPGA-DSP IP with Python / MyHDL. The original content is still present but the post has been reorganized and expanded. Original post 16-Mar-2010.
Developing FPGA-DSP IP with Python / MyHDLUsing Python to develop DSP logic for an FPGA is very powerful. The Python ecosystem contains many packages including numerical and...
Went 280km/h (174mph) in a Porsche Panamera in Germany!
Those of you who've been following my blog lately already know that I am going through some sort of mid-life crisis that involves going out there to meet people and make videos. It all started with Embedded World early this year, then continued at ESC Boston a couple of months ago and the latest chapter just concluded as I returned from Germany after spending a week at SEGGER's headquarters to produce a video to highlight their 25th anniversary.
Half-band filter on Xilinx FPGA
1. DSP48 Slice in Xilinx FPGAThere are many DSP48 Slices in most Xilinx® FPGAs, one DSP48 slice in Spartan6® FPGA is shown in Figure 1, the structure may different depending on the device, but broadly similar.
Figure 1: A whole DSP48A1 Slice in Spartan6 (www.xilinx.com)
2. Symmetric Systolic Half-band FIRFigure 2: Symmetric Systolic Half-band FIR Filter
3. Two-channel Symmetric Systolic Half-band FIRFigure 3: 2-Channel...
Three more things you need to know when transitioning from MCUs to FPGAs
Take a look at three more important difference between FPGAs and MCUs: "code reuse" vs templating, metastability and blocking vs. non-blocking operations.
Dealing With Fixed Point Fractions
Fixed point fractional representation always gives me a headache because I screw it up the first time I try to implement an algorithm. The difference between integer operations and fractional operations is in the overflow. If the representation fits in the fixed point result, you can not tell the difference between fixed point integer and fixed point fractions. When integers overflow, they lose data off the most significant bits. When fractions overflow, they lose data off...
Free Goodies from Embedded World - What to Do Next?
I told you I would go on a hunt for free stuff at Embedded World in order to build a bundle for someone to win.
StrangeCPU #1. A new CPU
Summary: In this multi-part series I will share with you a design, implementation notes and code for a slightly different kind of a CPU featuring a novel token machine that resolves an 8-bit token to pretty much any address in a 32-bit or even 64-bit address space, using not much more than an adder.
Table of Contents:- Part 1: A new CPU - technology review, re-examination of the premises; StrangeCPU concepts; x86 notes.
MyHDL synthesis: from browser to FPGA in five seconds
When it comes to feeding (mostly proprietary) synthesis tools, the most widely supported HDL (hardware design language) is probably plain Verilog, then comes VHDL. The reasons for that are simply based on popularity or the fact that VHDL is a little more complex to parse.
So, all super-HDLs (like Chisel, SpinalHDL, etc.) transfer to one of these V* HDLs in one way or another, then synthesis/mapping/place'n'route turns it into a wiring map for the silicon. Same went for MyHDL or its also...
Went 280km/h (174mph) in a Porsche Panamera in Germany!
Those of you who've been following my blog lately already know that I am going through some sort of mid-life crisis that involves going out there to meet people and make videos. It all started with Embedded World early this year, then continued at ESC Boston a couple of months ago and the latest chapter just concluded as I returned from Germany after spending a week at SEGGER's headquarters to produce a video to highlight their 25th anniversary.
Half-band filter on Xilinx FPGA
1. DSP48 Slice in Xilinx FPGAThere are many DSP48 Slices in most Xilinx® FPGAs, one DSP48 slice in Spartan6® FPGA is shown in Figure 1, the structure may different depending on the device, but broadly similar.
Figure 1: A whole DSP48A1 Slice in Spartan6 (www.xilinx.com)
2. Symmetric Systolic Half-band FIRFigure 2: Symmetric Systolic Half-band FIR Filter
3. Two-channel Symmetric Systolic Half-band FIRFigure 3: 2-Channel...
Inside the Spartan-6: Using LUTs to optimize circuits
While building a small CPU on a Spartan-6 chip I came across the same old problem: my Verilog was mapping to a lot of slices . Way more then seems reasonable. So let's dig in and see what's really going on.
The J1 CPU (see Messing Around with a J1) is an amazingly streamlined design expressed in just over 100 lines of Verilog, and is reasonably compact at 150 Spartan-6 slices (half of that with the modifications described in the article). But the Picoblaze is...
Two jobs
For those of you following closely embeddedrelated and the other related sites, you might have noticed that I have been less active for the last couple of months, and I will use this blog post to explain why. The main reason is that I got myself involved into a project that ended up using a better part of my cpu than I originally thought it would.
edit - video of the event:
I currently have two jobs: one as an electrical/dsp engineer recycled as a web publisher and the other...
Data Types for Control & DSP
There's a lot of information out there on what data types to use for digital signal processing, but there's also a lot of confusion, so the topic bears repeating.
I recently posted an entry on PID control. In that article I glossed over the data types used by showing "double" in all of my example code. Numerically, this should work for most control problems, but it can be an extravagant use of processor resources. There ought to be a better way to determine what precision you need...
How to start in FPGA development? - Some tips
IntroductionThe aim of this tutorial is to show some useful tips for people like me that one day started from zero to work with FPGA's. Why FPGA's? Because they are easy to use and they are not too expensive, and they are usually used in lab courses to let students "play" with them.
1: How to choose the right FPGA?As you may know there are a lot of different FPGA's, brands and models. How to choose the right one? It's very difficult to say that before knowing which will be the...
Learning VHDL - Basics
Since FPGA are becoming more accessible to the hobbyist, learning how to use them can be really useful for certain applications, like DSP and video generation; moreover, engineers that are able to code in VHDL/Verilog are always requested on the job market.
In this tutorial I will cover the basics of Xilinx ISE and VHDL. I willl base my code on the Basys2 board from Digilent: it is really cheap (especially for students) and has a lot of features on board, as you can see from the picture...
Sensors Expo - Trip Report & My Best Video Yet!
This was my first time at Sensors Expo and my second time in Silicon Valley and I must say I had a great time.
Before I share with you what I find to be, by far, my best 'highlights' video yet for a conference/trade show, let me try to entertain you with a few anecdotes from this trip. If you are not interested by my stories or maybe don't have the extra minutes needed to read them, please feel free to skip to the end of this blog post to watch the...
Linear Feedback Shift Registers for the Uninitiated, Part II: libgf2 and Primitive Polynomials
Last time, we looked at the basics of LFSRs and finite fields formed by the quotient ring \( GF(2)[x]/p(x) \).
LFSRs can be described by a list of binary coefficients, sometimes referred as the polynomial, since they correspond directly to the characteristic polynomial of the quotient ring.
Today we’re going to look at how to perform certain practical calculations in these finite fields. I maintain a Python library on bitbucket called...
New Comments System (please help me test it)
I thought it would take me a day or two to implement, it took almost two weeks...
But here it is, the new comments systems for blogs, heavily inspired by the forum system I developed earlier this year.
Which means that:
- You can easily add images, either by drag and drop or through the 'Insert Image' button
- You can add MathML, TeX and ASCIImath equations and they will be rendered with Mathjax
- You can add code snippets and they will be highlighted with highlights.js
- You can edit...