Homebrew CPUs: Messing around with a J1
In this article I will examine James Bowman's excellent J1 CPU; I will then proceed to mess around with various parts of it, making it smaller, more appropriate to my particular application, and possibly faster. I hope this will show you how easy it is to fiddle around with homemade CPUs and encourage you to make something weird and wonderful.
J1 CPUMy hat is off to James Bowman. J1 is pretty cool. It is a stack machine; it executes instructions in one cycle, it is...
Makefiles for Xilinx Tools
Building a bitstream from an HDL is a complicated process that requires the cooperation of a lot of tools. You can hide behind an IDE or grow a pair and use command line tools and a makefile to tie your build process together. I am not a huge fan of makefiles either (I believe a language should be expressive enough to automate the build process), but the alternatives are dismal.
Command-line driven workflow is easier on the hands and faster. The example...
Use a Simple Microprogram Controller (MPC) to Speed Development of Complex Microprogrammed State Machines
IntroductionThis article will describe a synthesizable HDL-based microprogram controller (MPC), or microprogram sequencer (MPS), that can be used to provide the control of a microprogrammed state machine. Unlike the microprogrammed state machines that I described in my previous two articles, "Use Microprogramming to Save Resources and Add Functionality" and "Fit Sixteen (or more) Asynchronous Serial Receivers in the Area of a Standard UART", many microprogrammed state machines will...
Fit Sixteen (or more) Asynchronous Serial Receivers into the Area of a Standard UART Receiver
IntroductionThis article will describe a technique, available in many current FPGA architectures, to fit a large amount of logic into a small area. About ten years ago now (Feb/Mar 2005), I helped develop a multi-line Caller ID product. The Multi-Channel Asynchronous Receiver (MCAR) FPGA core developed for that product will be used to illustrate the technique(s) needed to fit a 16 channel MCAR into a single Spartan II XC2S30-5VQ100 FPGA.
To stay true to the original design, I...
Use Microprogramming to Save Resources and Increase Functionality
IntroductionMicroprogramming is a design approach that every FPGA designer should have in their bag of tricks. I subscribe to the concept that microprogramming is a structured approach to the design of state machines. This is essentially the view of Maurice Wilkes when he first proposed microprogramming in 1951 as an alternative method for the implementation of the control section of a computer. Wilkes was interested in improving the reliability and reducing time needed to implement...
I don’t often convert VHDL to Verilog but when I do ...
VHDL to VerilogI don’t often convert VHDL to Verilog but when I do it is not the most exciting task in the world (that is an understatement). For the most part I am HDL agnostic. Well that is not true, I have a strong preference for MyHDL, and an insubstantial preference for VHDL over Verilog. The choice of HDL for a project is often complicated, irrational, sometimes rational, but most often random. It is often not a choice of the developer - for...
Point of View
I was caught of guard when someone commented:
"when a FIR filter is full of multiple loops and complex code, something is wrong"The comment was made during an informal discussion on alternative hardware description languages (HDL) and was targeted to the straightforward FIR filter implemented in MyHDL:
(different FIR description simulation results)
Personally, (and...
MyHDL Presentation Examples
The last two years I presented at EELive. The first year as an overview of MyHDL and a strong case why you should be using MyHDL as your hardware description language (HDL) [paper]. The second year was an introduction to three alternative HDLs (alt.hdl), including MyHDL. I also presented at a regional Python conferene: pyohio. At the Python conference I presented...
Spline interpolation
A cookbook recipe for segmented y=f(x) 3rd-order polynomial interpolation based on arbitrary input data. Includes Octave/Matlab design script and Verilog implementation example. Keywords: Spline, interpolation, function modeling, fixed point approximation, data fitting, Matlab, RTL, Verilog
IntroductionSplines describe a smooth function with a small number of parameters. They are well-known for example from vector drawing programs, or to define a "natural" movement path through given...
[Comments] C HLS Benefits
Earlier this week I posted a small write-up comparing a hardware median calculation implemented in a C-to gates "HLS" (Vivado C HLS) and a version in MyHDL. For a long time I have had the belief that C-to-gate technologies are of little to no benefit - based on the simple premise that "C" is not that high-level of a language (I actually consider it lower than Verilog and VHDL ... but that is a conversation for another time).
Language comparisons...
State Machine ‘v’ Micro in a FPGA
Designing a system and considering if to have a FPGA in the first place is something a engineer should always consider. However one thing that people look to do is designing a microcontroller on a FPGA and in this post I want to consider why we would do it at all and what would be the real consideration for doing this.
We first look at what's available in the microcontroller world. We have a vast range from tiny 8bit 6 pin devices right the way up to monster 32bit devices. These...
Introduction to FPGA Technology
OverviewFPGA stands for Field Programmable Gate Array. An FPGA is an integrated circuit (IC) that can be programmed and configured by the embedded system developer in the field after it has been manufactured. FPGA is a semi-conductor device which is not limited to any pre-defined hardware function; it is rather highly flexible in its functionality and may be configured by the embedded system developer according to his design requirements. FPGAs use pre-built logic blocks and programmable...
PC and SP for a small CPU
Ok, let's make a small stack-based CPU.
I will start where the rubber meets the road - the PC/stack subsystem that I like referring to as the 'legs'. As usual, I will present a design with a twist.
Not having a large design team, deadlines and million-dollar fab runs when designing CPUs creates a truly different environment. I can actually sit at the kitchen table and doodle around with CPU designs to my heart's content. I can try really ridiculous approaches, and work without a...
Oscilloscope Dreams
My coworkers and I recently needed a new oscilloscope. I thought I would share some of the features I look for when purchasing one.
When I was in college in the early 1990's, our oscilloscopes looked like this:
Now the cathode ray tubes have almost all been replaced by digital storage scopes with color LCD screens, and they look like these:
Oscilloscopes are basically just fancy expensive boxes for graphing voltage vs. time. They span a wide range of features and prices:...
Spread the Word and Run a Chance to Win a Bundle of Goodies from Embedded World
Do you have a Twitter and/or Linkedin account?
If you do, please consider paying close attention for the next few days to the EmbeddedRelated Twitter account and to my personal Linkedin account (feel free to connect). This is where I will be posting lots of updates about how the EmbeddedRelated.tv live streaming experience is going at Embedded World.
The most successful this live broadcasting experience will be, the better the chances that I will be able to do it...
Launch of EmbeddedRelated.tv
With the upcoming Embedded Word just around the corner, I am very excited to launch the EmbeddedRelated.tv platform.
This is where you will find the schedule for all the live broadcasts that I will be doing from Embedded World next week. Please note that the schedule will be evolving constantly, even during the show, so I suggest your refresh the page often. For instance, I am still unsure if I will be able to do the 'opening of the doors' broadcast as...
Feedback Controllers - Making Hardware with Firmware. Part 8. Control Loop Test-bed
This part in the series will consider the signals, measurements, analyses and configurations for testing high-speed low-latency feedback loops and their controllers. Along with basic test signals, a versatile IFFT signal generation scheme will be discussed and implemented. A simple controller under test will be constructed to demonstrate the analysis principles in preparation for the design and evaluation of specific controllers and closed-loop applications.
Additional design...Elliptic Curve Key Exchange
Elliptic Curve Cryptography is used to create a Public Key system that allows two people (or computers) to exchange public data so that both sides know a secret that no one else can find in a reasonable time. The simplest method uses a fixed public key for each person. Once cracked, every message ever sent with that key is open. More advanced key exchange systems have "perfect forward secrecy" which means that even if one message key is cracked, no other message will...
Elliptic Curve Cryptography
Secure online communications require encryption. One standard is AES (Advanced Encryption Standard) from NIST. But for this to work, both sides need the same key for encryption and decryption. This is called Private Key encryption.
MyHDL FPGA Tutorial II cont. (Echo, Audio Interface)
IntroductionTo demonstrate the echo on an FPGA board an interface to an audio ADC/DAC chip will be used. The following will explain the connection to the audio codec and the HDL module used to interface.
Audio Codec InterfaceI have two boards with TI AIC23b audio codecs. The AIC23 has a configuration interface (ability to program the registers) and a streaming audio interface. The SPI mode will be used to configure the codec and the I2S interface is used to send and...
Designing Embedded System with FPGA - 1
With the introduction of soft processors and related tools (like EDK from Xilinx), implementation of basic embedded system in FPGA is made easy. This requires very little or almost no knowledge of VHDL programming. Actually that’s how I started. If user is interested in taking full advantage of FPGA and its parallel processing power, then yes, detail understanding of soft processor, its peripheral bus and VHDL programming is required.
I will start with...
Welcoming MANY New Bloggers!
The response to the latest call for bloggers has been amazing and I am very grateful.
In this post I present to you the individuals who, so far (I am still receiving applications at an impressive rate and will update this page as more bloggers are added), have been given access to the blogging interface. I am very pleased with the positive response and I think the near future will see the publication of many great articles, given the quality of the...
Feedback Controllers - Making Hardware with Firmware. Part I. Introduction
Introduction to the topicThis is the 1st in a series of articles looking at how we can use DSP and Feedback Control Sciences along with some mixed-signal electronics and number-crunching capability (e.g. FPGA), to create arbitrary (within reason) Electrical/Electronic Circuits with real-world connectivity. Of equal importance will be the evaluation of the functionality and performance of a practical design made from modestly-priced state of the art devices.
- Part 1:
SEGGER's 25th Anniversary Video
Chances are you will find this video more interesting to watch if you take five minutes to first read the story of the week I spent at SEGGER's headquarters at the end of June.
The video is only a little more than 2 minutes long. If you decide to watch it, make sure to go full screen and I would really love to read your thoughts about it in the comments down bellow. Do you think a video like this succeeds in making the viewer want to learn more about the company?...
How precise is my measurement?
Some might argue that measurement is a blend of skepticism and faith. While time constraints might make you lean toward faith, some healthy engineering skepticism should bring you back to statistics. This article reviews some practical statistics that can help you satisfy one common question posed by skeptical engineers: “How precise is my measurement?” As we’ll see, by understanding how to answer it, you gain a degree of control over your measurement time.
An accurate, precise...FPGA Assemblers and Time Machines
Flashback to 1986. A young man has a crazy idea - he wants to make a CPU all by himself. He is reading early Xilinx manuals cover to cover as if they were novels. Yes, you are quick - this is indeed a (mostly) true story about me and my dream, suddenly made possible by this new FPGA technology.
Sadly more than 20 years went by before my first CPU ran in a Xilinx FPGA. Why did it take so long? Every few years I set up the tools and every time I walked away, scared silly. As the years...
An absolute position encoder VHDL core
In this article, Fabien Le Mentec explains how to implement a unique VHDL core addressing absolute position encoder interfaces. He reviews existing instruments in use or being developed and considers their specific requirements. He also looks for details in current implementations and considers the projects to come so that the implementation can be designed to be extensible. The VHDL core dubbed absenc features both ENDAT, BISS and SSI interface. Due to its architecture, new interfaces are easily added. Also, the 3 interfaces can be enabled at synthesis while 1 is selected at runtime. As much as possible, resources common to the different interfaces are shared (counters, comparators…).
Going back to Germany!
A couple of blog posts ago, I wrote that the decision to go to ESC Boston ended up being a great one for many different reasons. I came back from the conference energized and really happy that I went.
These feelings were amplified a few days after my return when I received an email from Rolf Segger, the founder of SEGGER Microcontroller (check out their very new website), asking if I would be interested in visiting their headquarters...
binary hello world
Python + Ohio + MyHDL + FPGARecently I had the opportunity to coordinate a hands-on programmable hardware (FPGA) workshop (open-space) at a regional Python conference - @pyohio. The workshop was for those that had little to no exposure to programmable hardware. For this situation I used two basic examples: two versions of a binary hello world.
The binary hello world -- blinking an LED -- is a good starting point to introduce programmable hardware, hardware descriptions languages,...
Who else is going to Sensors Expo in San Jose? Looking for roommate(s)!
This will be my first time attending this show and I must say that I am excited. I am bringing with me my cameras and other video equipment with the intention to capture as much footage as possible and produce a (hopefully) fun to watch 'highlights' video. I will also try to film as many demos as possible and share them with you.
I enjoy going to shows like this one as it gives me the opportunity to get out of my home-office (from where I manage and run the *Related sites) and actually...