BGA and QFP at Home 1 - A Practical Guide.
It is almost universally accepted by the hobbyists that you can't work with high-density packages at home. That is entirely incorrect. I've been assembling and reflowing BGA circuit boards at home for a few years now. BGAs and 0.5mm-pitch QFPs are well within the realm of a determined amateur.
This series of articles presents practical information on designing and assembling boards with high-density packages at home. While the focus is on FPGA packages, most of...
Windows XP and Win32 - the Platform of the Future!
Over the past decade I often wondered why anyone uses Windows. It's just so... proprietary. And pedestrian. As I grew up my OS of choice went nothing to CPM to DOS (on Apple ][), GEM on Atari ST, MS-DOS, DOS extenders, Mac OS, Windows NT, Windows XP, Linux... Now, I again find myself a fan of Windows XP, the platform of the future. (I am still a fan of bare metal, of course).Maybe I am not totally serious, but I, a self-proclaimed freedom lover and...
Introducing the VPCIe framework
IntroductionMy daily work involves platforms featuring an embedded CPU communcating with a FPGA device over a PCI Express link (PCIe for short). The main purpose of this link is for the CPU to convey configuration, control, and status commands to hardware slaves implemented in the FPGA. For data intensive applications (2D XRay detector readout backend), this link can also be used as a DMA channel to transfer data from the FPGA to the CPU memory. Finally, a slave can interrupt the CPU using...
binary hello world
Python + Ohio + MyHDL + FPGARecently I had the opportunity to coordinate a hands-on programmable hardware (FPGA) workshop (open-space) at a regional Python conference - @pyohio. The workshop was for those that had little to no exposure to programmable hardware. For this situation I used two basic examples: two versions of a binary hello world.
The binary hello world -- blinking an LED -- is a good starting point to introduce programmable hardware, hardware descriptions languages,...
Tool install for examples
Most of my examples on fpgarelated use MyHDL for the hardware description and another Python package myhdl_tools rhea.build to control the FPGA vendor's software. This means everything is controlled and run from the Python environment.
Install the following to compile the posted examples:
MyHDL package : pip myhdl or myhdl github myhdl_tools : myhdl_tools bitbucket rhea...Shared-multiplier polyphase FIR filter
Keywords: FPGA, interpolating decimating FIR filter, sample rate conversion, shared multiplexed pipelined multiplier
Discussion, working code (parametrized Verilog) and Matlab reference design for a FIR polyphase resampler with arbitrary interpolation and decimation ratio, mapped to one multiplier and RAM.
IntroductionA polyphase filter can be as straightforward as multirate DSP ever gets, if it doesn't turn into a semi-deterministic, three-legged little dance between input, output and...
PC and SP for a small CPU
Ok, let's make a small stack-based CPU.
I will start where the rubber meets the road - the PC/stack subsystem that I like referring to as the 'legs'. As usual, I will present a design with a twist.
Not having a large design team, deadlines and million-dollar fab runs when designing CPUs creates a truly different environment. I can actually sit at the kitchen table and doodle around with CPU designs to my heart's content. I can try really ridiculous approaches, and work without a...
What do Ohio, Python, and FPGAs have in common?
Anyone in the Columbus Ohio area in the United States this upcoming weekend (7/27 and 7/28) should stop by the @pyohio conference. This is a *FREE* regional python conference. I will be giving a talk at the end of the day Sunday, discussing MyHDL, FPGAs, and a hands-on workshop following the presentation.
The talk will focus on introducing programmable hardware to "imperative thinkers". Anyone curious about FPGAs, Python, or familiar with FPGAs or embedded...
How FPGAs work, and why you'll buy one
Today, pretty much everyone has a CPU, a DSP and a GPU, buried somewhere in their PC, phone, car, etc. Most don't know or care that they bought any of these, but they did.
Will everyone, at some future point, also buy an FPGA? The market size of FPGAs today is about 1% of the annual global semiconductor sales (~$3B vs ~$300B). Will FPGA eventually...
Learning VHDL - Basics
Since FPGA are becoming more accessible to the hobbyist, learning how to use them can be really useful for certain applications, like DSP and video generation; moreover, engineers that are able to code in VHDL/Verilog are always requested on the job market.
In this tutorial I will cover the basics of Xilinx ISE and VHDL. I willl base my code on the Basys2 board from Digilent: it is really cheap (especially for students) and has a lot of features on board, as you can see from the picture...
Feedback Controllers - Making Hardware with Firmware. Part 6. Self-Calibration Related.
This article will consider the engineering of a self-calibration & self-test capability to enable the project hardware to be configured and its basic performance evaluated and verified, ready for the development of the low-latency controller DSP firmware and closed-loop applications. Performance specifications will be documented in due course, on the project website here.
- Part 6: Self-Calibration, Measurements and Signalling (this part)
- Part 5:
VGA Output in 7 Slices. Really.
Ridiculous? Read on - I will show you how to generate VGA timing in seven XilinxR Spartan3R slices.Some time ago I needed to output video to a VGA monitor for my Apple ][ FPGA clone. Obviously (I thought), VGA's been done before and all I had to do was find some Verilog code and drop it into my design. As is often the case (with me anyway), the task proved to be very different from my imagined 'couple of hours to integrate the IP'.I found some example code for my board. I...
Tools of the Trade: reading PDFs (and keeping bookmarks)
In this article I will take a look at the wonderful MuPDF viewer and present a small modification that saves bookmarks alongside the pdf files, making it infinitely more useful.
Some days I sit down to work and wonder how anything ever gets done. A simple example. When I work on an FPGA design, I wind up with 3 or 4 screens full of documentation, generally in PDF format. There are the Xilinx manuals, the various tool manuals, language reference manuals, you name it. While...
Project introduction: Digital Filter Blocks in MyHDL and their integration in pyFDA
Hi everyone! After a lot of hesitation and several failed attempts, I have finally entered the world of blogging. A little about myself : My name is Sriyash Caculo and I’m a third year undergrad student at BITS Pilani K.K. Birla Goa Campus pursuing a major in Electronics and Instrumentation engineering. Being an electronics engineer, I developed an interest in Digital Signal Processing and its implementation on hardware.
This blog-post is the first of many to come for the...
MyHDL FPGA Tutorial II (Audio Echo)
IntroductionThis tutorial will walk through an audio echo that can be implemented on an FPGA development board. This tutorial is quite a bit more involved than the previous MyHDL FPGA tutorial. This project will require an FPGA board with an audio codec and the interface logic to the audio codec.
Review the Previous TutorialThe previous MyHDL FPGA tutorial I posted a strobing LED on an FPGA board. In that tutorial we introduced the basics of a MyHDL module....
Mathematics and Cryptography
The mathematics of number theory and elliptic curves can take a life time to learn because they are very deep subjects. As engineers we don't have time to earn PhD's in math along with all the things we have to learn just to make communications systems work. However, a little learning can go a long way to helping make our communications systems secure - we don't need to know everything. The following articles are broken down into two realms, number theory and elliptic...
Polynomial Math
Elliptic Curve Cryptography is used as a public key infrastructure to secure credit cards, phones and communications links. All these devices use either FPGA's or embedded microprocessors to compute the algorithms that make the mathematics work. While the math is not hard, it can be confusing the first time you see it. This blog is an introduction to the operations of squaring and computing an inverse over a finite field which are used in computing Elliptic Curve arithmetic. ...
One Clock Cycle Polynomial Math
Error correction codes and cryptographic computations are most easily performed working with GF(2^n)
Use a Simple Microprogram Controller (MPC) to Speed Development of Complex Microprogrammed State Machines
IntroductionThis article will describe a synthesizable HDL-based microprogram controller (MPC), or microprogram sequencer (MPS), that can be used to provide the control of a microprogrammed state machine. Unlike the microprogrammed state machines that I described in my previous two articles, "Use Microprogramming to Save Resources and Add Functionality" and "Fit Sixteen (or more) Asynchronous Serial Receivers in the Area of a Standard UART", many microprogrammed state machines will...
Polynomial Inverse
One of the important steps of computing point addition over elliptic curves is a division of two polynomials.
Project introduction: Digital Filter Blocks in MyHDL and their integration in pyFDA
Hi everyone! After a lot of hesitation and several failed attempts, I have finally entered the world of blogging. A little about myself : My name is Sriyash Caculo and I’m a third year undergrad student at BITS Pilani K.K. Birla Goa Campus pursuing a major in Electronics and Instrumentation engineering. Being an electronics engineer, I developed an interest in Digital Signal Processing and its implementation on hardware.
This blog-post is the first of many to come for the...
Feedback Controllers - Making Hardware with Firmware. Part 2. Ideal Model Examples
Developing and Validating Simulation ModelsThis article will describe models for simulating the systems and controllers for the hardware emulation application described in Part 1 of the series.
- Part 1: Introduction
- Part 2: Ideal Model Examples
- Part 3: Sampled Data Aspects
- Part 4: Engineering of Evaluation Hardware
- Part 5:
Feedback Controllers - Making Hardware with Firmware. Part 4. Engineering of Evaluation Hardware
Following on from the previous abstract descriptions of an arbitrary circuit emulation application for low-latency feedback controllers, we now come to some aspects in the hardware engineering of an evaluation design from concept to first power-up. In due course a complete specification along with application examples will be maintained on the project website.- Part 1: Introduction
- Part 2:...
Helping New Bloggers to Break the Ice: A New Ipad Pro for the Author with the Best Article!
Breaking the ice can be tough. Over the years, many individuals have asked to be given access to the blogging interface only to never post an article.
MyHDL synthesis: from browser to FPGA in five seconds
When it comes to feeding (mostly proprietary) synthesis tools, the most widely supported HDL (hardware design language) is probably plain Verilog, then comes VHDL. The reasons for that are simply based on popularity or the fact that VHDL is a little more complex to parse.
So, all super-HDLs (like Chisel, SpinalHDL, etc.) transfer to one of these V* HDLs in one way or another, then synthesis/mapping/place'n'route turns it into a wiring map for the silicon. Same went for MyHDL or its also...
Feedback Controllers - Making Hardware with Firmware. Part 3. Sampled Data Aspects
Some Design and Simulation Considerations for Sampled-Data ControllersThis article will continue to look at some aspects of the controllers and electronics needed to create emulated physical circuits with real-world connectivity and will look at the issues that arise in sampled-data controllers compared to continuous-domain controllers. As such, is not intended as an introduction to sampled-data systems.
- Part 1: Introduction
Feedback Controllers - Making Hardware with Firmware. Part 5. Some FPGA Aspects.
This part of the on-going series of articles looks at a variety of aspects concerning the FPGA device which provides the high-speed maths capability for the low-latency controller and the arbitrary circuit generator application. In due course a complete specification along with application examples will be maintained on the project website here.- Part 5: Some FPGA Aspects (this part)
- Part 4: Engineering of...
Use a Simple Microprogram Controller (MPC) to Speed Development of Complex Microprogrammed State Machines
IntroductionThis article will describe a synthesizable HDL-based microprogram controller (MPC), or microprogram sequencer (MPS), that can be used to provide the control of a microprogrammed state machine. Unlike the microprogrammed state machines that I described in my previous two articles, "Use Microprogramming to Save Resources and Add Functionality" and "Fit Sixteen (or more) Asynchronous Serial Receivers in the Area of a Standard UART", many microprogrammed state machines will...
Feedback Controllers - Making Hardware with Firmware. Part 6. Self-Calibration Related.
This article will consider the engineering of a self-calibration & self-test capability to enable the project hardware to be configured and its basic performance evaluated and verified, ready for the development of the low-latency controller DSP firmware and closed-loop applications. Performance specifications will be documented in due course, on the project website here.
- Part 6: Self-Calibration, Measurements and Signalling (this part)
- Part 5: